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S U M M A R Y  

The structural determination of biological molecules in solution by NMR relies on the determination of 
a set of interatomic distances obtained by measurement of intramolecular nuclear Overhauser effects (NOE). 
It is shown in this paper that it is possible to obtain the accurate relaxation rate (and hence the interatomic 
distance) from the direct measurement of a single NOE signal. The precise analysis o fa  NOESY peak evolu- 
tion with respect to the mixing time allows the evaluation of the relaxation parameters for the pair of spins 
under consideration. This is done without any assumption on the relaxation of unmeasured spins, or on the 
movement of  the molecule. The theoretical basis of this method is presented. In order to evaluate the pro- 
posed method, a simulated case on the protein BPTI is studied, which shows that the method performs very 
well even in the case of noisy data sets. 

I N T R O D U C T I O N  

N M R  is an inva luab le  tool  for  the s t ruc tura l  de t e rmina t i on  o f  b io logica l  molecules  in solut ion,  

The  m e t h o d  relies on the d e t e r m i n a t i o n  o f  a set o f  i n t e ra tomic  d is tances  ob ta ined  f rom the mole-  

cule under  s tudy by the measu remen t  o f  i n t r amolecu l a r  nuclear  Overhause r  effects ( N O E )  

( M a c u r a  and Ernst ,  1980). M e a s u r e m e n t  o f  the N O E  intensi ty provides  an a p p r o x i m a t e  value o f  

the d i p o l a r  r e l axa t ion  rate,  f rom which the in te ra tomic  d is tances  in the molecule  can be eva lua ted .  

A 3D s t ruc ture  o f  the molecule  can  then be p r o d u c e d  f rom the e s t ima t ion  o f  these d is tances  

(Cr ippen  and  Havel ,  1978: Braun and G6 ,  1985). 

Several  m a j o r  p rob l ems  arise f rom this a p p r o a c h .  The  first is that  an accura te  measu remen t  o f  

the N O E  p a r a m e t e r s  does  not  lead to the de r iva t ion  o f  accura te  values for the in te ra tomic  dis tan-  
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ces. This is due to the NOE parameter dependence on the value J(o~), the spectral density function 

of the movement of the molecule, which is usually unknown. A second problem is that, due to col- 
lective relaxation modes known as spin diffusion, it is very difficult to accurately evaluate the 
value of  a relaxation parameter from the measurement of a single NOE intensity (Lane, 1988; 
Clore and Gronenborn,  1989). The complete interpretation of  the relaxation pathways necessit- 
ates the handling of  the relaxation matrix as a whole (Borgias and James, 1988). One way of  cir- 
cumventing this problem is to measure the values of  the NOE intensities at very short mixing 
times for which spin diffusion has not yet occurred (Kumar et al., 1981). This approach however, 
is only rigorously valid for infinitely small NOE intensities, and thus remains biased for realistic 
measurements. A better approach is to measure as many NOEs as possible, and to reconstruct the 
complete relaxation matrix from this (usually) partial set of  values. Several methods (Boelens et 
al., 1988: Borgias and James, 1989: Koehl and Lef6vre, 1990: Gippert et al., 1990; Madrid et al., 
1991; Baleja et al., 1990; Mertz et al., 1991: Bonvin et al., 1991) have been proposed to overcome 
the problem of an incomplete set of  values, but the number of  quantified NOE peaks always in- 
fluences the accuracy of the final result. Some of these methods rely on some kind of  molecular 
modelling to compensate for the lack of measured NOEs and, as such, depend on a model for the 
movement of the molecule. 

In this paper we propose a method for obtaining accurate relaxation rates from the direct 
measurement of a single NOE signal. This method relies on a precise analysis of  the NOE peak 
evolution with respect to the mixing time in a NOESY experiment. This analysis allows the eva- 
luation of  the relaxation parameters for the pair of  spins under consideration, without extra as- 
sumptions on the relaxation of unmeasured spins, or on the movement of the molecule. We will 
first describe the theoretical basis of  this method, and follow this with a simulated case on the 
protein BPTI, in order to evaluate the proposed method. 

T H E O R Y  

One can express the NOE intensities obtained from a NOESY experiment as a series of  sym- 
metric matrices I(~m), where Iij(~m! holds the intensity of  the cross peak between atoms i and j, for 
a NOESY mixing time of t , , .  The relaxation parameters for each pair of  spins can be presented as 
a matrix (the relaxation matrix) 2.5" is connected to the NOE intensity matrix I(~m) by the relation 
(Keepers and James, 1984): 

I ( r m ) = e x p ( y Z  rm)Io (1) 

where Io is a diagonal matrix with elements equal to the equilibrium magnetizations of  each re- 
spective spin. 

If the complete experimental determination of  the I(~m) matrix can be performed at a given ~m, 
then the determination of Z is straightforward (Olejniczak et al., 1986). However, this is seldom 
the case, due to overlap in the 2D NOESY spectra. 

The problem is then one of incompleteness of I('tm) and several procedures have been proposed 
to interpret quantitative NOESY information in terms of the relaxation matrix Y~. We will show 
here, that this incompleteness can be avoided ira different approach to the problem is taken. 

The relaxation matrix is symmetric, provided we use the construction proposed by Olejniczak 



(1989). It can be diagonalized: 

Z = L A L  t 

where A is a diagonal matrix, and I is thus computed by: 

I = L  e x p ( - A  rm) L t 

From Eq. 2 we can rewrite each element of matrix Y. in the following way: 

~ij = Z  Lik Ljk )'k 
k 
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(2) 

(3) 

(4) 

so that each element of matrix I becomes: 

lij = Z Elk Ljk e x p ( -  Ak rm) (5) 
k 

where the Lik is the (i,k) element of the matrix L, and %k is the k th element of the diagonal matrix 
A. We can rewrite Eqs. 4 and 5 as follows: 

lij (Tm)= 2 Ai~ exp(--)~k "Cm) (6) 
k 

and: 

E , j = ~  A~ 2 k (7) 
k 

where: 

A~ = Lik Ljk (8) 

The form of Eq. 6 proves that NOESY build-up curves are sums of exponentials. Equations 6 
and 7 show that we can deduce the value of the relaxation matrix elements from the analytical 
form of the build-up curve. 

The process we propose for computing the relaxation matrix elements from the NOESY experi- 
mental intensities is then, given an experimental NOE build-up curve Iij(~m) measured between 
atoms i and j, to extract the parameters A~ and %~ of the multi-exponential decay. Because of the 
bad accuracy of experimental build-up curves, no effort will be made to correlate the ;q~ values for 
the different {i,j} atom pairs under consideration. 

From the parameters A~ and %~ it is then easy to obtain the values of the relaxation parameter 
Zij. Subsequently, it is possible to extract distance information by assuming a dynamic model for 
the molecule (for instance rigid spherical tumbling). 

It is well known that extracting parameters from a sum of exponentials is a major challenge in 
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numerical analysis. However, the problem is eased here by the fact that we have: 

A~ = 0 (9) 
k 

as the cross-relaxation intensity at Tm= 0 is null. 
The LP-SVD method (Barkhuijsen et al., 1985) has been chosen in this work, because it permits 

the separation of the signal parameters from additional parameters arising from the noise 
(Kumaresan and Tufts, 1982). 

MATERIALS AND METHODS 

To test and exemplify the method, we chose to analyze a set of build-up curves simulated from 
BPTI, a small protein of 57 residues, the crystallographic structure of which, taken from the 
Protein Data Bank (6PTI), has been determined at 1.7 A (Wlodawer et al., 1987). 

The hydrogen atoms, absent in the X-ray structure, were added in a straightforward manner, 
using the DISCOVER program (Biosym Technologies). The structure was then energy-minimized 
to remove any remaining bad steric contacts. 

The program CORMA (Keepers and James, 1984) was used to simulate build-up curves at 
various Zm from the molecular structure. With Zm being varied from 0 to 2.0 s, three data sets were 
produced consisting of 30, 40 and 50 points, sampling the build-up curve at regular intervals of re- 
spectively 67 ms, 50 ms and 40 ms. 

The LP-SVD method (Barkhuijsen et al., 1985) was used to extract the exponential parameters 
from the build-up curves, act:ording to Eq. 6. The LP-SVD method is based on a Singular Value 
Decomposition analysis of the data. From this analysis, a polynomial is constructed (the so-called 
autoregressive backward polynomial) from which the damping factors of the exponentials present 
in the signal are evaluated. The autoregressive backward polynomial has the property that all the 
complex roots located outside the unit-circle (the signal-related roots) are related to damped 
sinusoids present in the signal, whereas the roots located within the unit-circle are related to noise 
and do not bear any relevant information (Kumaresan and Tufts, 1982). The frequencies and the 
damping factors of each sinusoid'found in the signal are then extracted from the signal-related 
roots as being, respectively, the phase and the inverse of the amplitude of each root. For the analy- 
sis of build-up curves, only real roots should be found outside the unit-circle, since no frequencies 
are present in the analyzed signal. From the evaluation of the damping factors of exponentials 
present in the signal, a simple least-squares analysi~ then permits the extraction of the amplitudes 
related to each exponential. 

When the noise level is high, however, instability in the polynomial rooting may generate 
complex roots outside the unit-circle. In this case, these roots are found as complex conjugated 
doublets called 'Froissard doublets' (Aubard et al., 1987). Such doublets lead to inaccurate recon- 
struction of the respective relaxation matrix elements. To circumvent this problem, we propose 
the rotation of such doublets about their center, before the amplitude estimate, in order to bring 
the roots back to the real axis. It is shown in the appendix that this operation does not modify the 
first order of the build-up curve reconstruction and can be safely used when the imaginary part of 
the complex root is small compared to the real part. This condition can be translated into geometric 
terms, by enforcing that the complex roots must lie within a cone of angular extent ct (Fig, 1 ). 
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In some cases however, particularly when the signal-to-noise ratio is very low, the LP-SVD ana- 

lysis produces complex root doublets corresponding to higher frequencies for which the condition 

of Fig. l no longer holds. In this case the fast frequencies detected in the signal are probably asso- 

ciated to the noise. We thus chose to ignore the related roots altogether for the amplitude recon- 

struction step. This decision was supported by the fact that the corresponding amplitudes, when 

computed, often appear to be at least one order of magnitude smaller than the other amplitudes. 

From the multiexponential analysis performed on the build-up curve as described, the relaxa- 

tion parameter Zij is computed as shown in Eq. 7. It is obvious that the accuracy of the determina- 

tion of the relaxation parameter is critically related to the accuracy of the multiexponential anal- 

ysis. In order to check the quality of  this analysis, we computed an 'R factor' much in the way X- 

ray crystallographers do. 

calc  X k - -  x~ ,xP[  

R-- k (10) 
~lx~,~l 
k 

Here x~, ~lc is the value of the calculated build-up curve reconstructed from the m'ultiexponential 

parameters, and x~, xp is the "experimental' data, for k running on the different values of'~m. The R 

factors were computed for each spin pair studied since each pair is independent. We.found the R 

factor to be more discriminant when computed only for small values of'era. 

The method described here is essentially designed to calculate the relaxation rates of proton 

pairs. But, to check its validity in a more sensitive manner, we decided to calculate the interproton 

distances from the relaxation rates, in order to compare them to those extracted directly from the 

crystallographic structure. 
From the rates, the distances were calculated using a classic method: having chosen a calibra- 

tion rate Eo, corresponding to the known distance do, all other distances dij were obtained from 

the rates Z,j: 
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Fig. 1. Visualization of the position of complex roots in the complex plane. When the imaginary part of the roots is small 
with respect to their real parts, the roots are in a cone of angular extent u. The angular extent depends on the ratio of 
imaginary and real parts. To apply root pivoting, we choose a ratio less than one-sixth, implying an angle of less than ap- 
proximately 15. Complex root doublets appearing in the shaded area are corrected by the root-pivoting operation (see 
text). Complex root doublets appearing outside this area are discarded. 
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the rates Eij: 

Zo=(d, j )  ~ 
Zij  \ d o /  

( l l )  

The calibration distance chosen was the 1.74 A distance of the aH pair of Gly 56. 
For the stability study, the processing was also performed for increasing levels of random noise 

present in the analyzed data set. The added noise had a Gaussian distribution and was generated 
with a congruent algorithm. 

All the methods described here were written in Fortran and implemented in the GIFA (Delsuc, 
1989) NMR data-processing program developed in our laboratory and available from the 
authors. The parameter extraction by the LP method was performed on an Alliant VFX 40 com- 
puter. 

A typical build-up curve and the result of the analysis are shown in Fig. 2. 

RESULTS 

From the NOE simulation of BPTI, we selected all the proton pairs giving NOEs greater than 
0.5% at a 200-ms mixing time, and which had interatomic distances shorter than 6.0 g,, for a total 
of 2304 proton pairs. Of the simulated data set, 55% of the simulated build-up curves had a mean 
intensity value equal to or smaller than 5% intensity in NOE units (defined here as the ratio of the 
peak to the diagonal peak of a single hydrogen for "c m : 0). 

A first test was prepared from the 50-points data sets, with no added noise. Out of the 2304 
build-up curves, 1352 were analyzed without difficulty, 785 needed the application of pivoting as 
described above, 200 were found with roots with large imaginary parts (the roots of which were 
thus rejected), 1 curve could not be analyzed because it led to a positive relaxation element, and 
2 curves had R factors greater than 0.25 and were thus rejected. The results for the 2301 deter- 
mined distances compared to the crystallographic distances are presented in Fig. 3a. The result of 

.N 0.5 

~176 . . . .  o15 . . . .  l : o  1:5 . . . .  2:o 
mixing time (sec) 

Fig. 2. Comparison between simulated (solid line) curve and results of the analysis (dashed line), for the ctH (Argl)-l]2H 
(Cys 55) pair in BPTI. The theoretical distance is 3.72 ,~, the computed one 3.76 A. The noise level is 0.1%. The R factor is 
0.24. 
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a more classical 'initial slope' analysis performed on the same data set is shown in Fig. 4, using the 
first 100-ms data points. 

Subsequently, three other tests were prepared from the 50-points data sets with added noise at 
levels o f  0.02%, 0.1% and 0.5%, in N O E  units. 
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Fig. 3. Plot of the calculated distances by the LP-SVD method (y-axis) as a function of theoretical distances (x-axis) on 
the 50-points data set, with different noise levels: 0% (a), 0.02% (b), 0.1% (c) and 0.5% (d). In each plot, proton pairs giving 

an R factor greater than 0.25 were removed; distances are in ,~,. 
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Fig. 4. Plot of  the calculated distances by the initial-slope method (y-axis) as a function of theoretical distances (x-axis) 

without noise. Distances are in ,~.. The slope was obtained from the two points at T,, = 50 ms and t., = 100 ms. assuming 

a two-spin relaxation mechanism�9 

For the first data set corresponding to a noise level of  0.02%, 1062 curves were analyzed without 

further processing, 955 required the use of  pivoting, 387 were found with roots with large imagin- 
ary parts (roots were thus rejected), 37 curves could not be analyzed as they led to positive relaxa- 

tion elements, 7 curves had no real roots, and 961 curves had R factors greater than 0.25 and were 
thus rejected. The results for the 1299 determined distances compared to the crystallographic dis- 

tances are presented in Fig. 3b. 
For the noise level of  0.1%, 1088 curves were directly analyzed, 931 required pivoting, 315 were 

found with roots with large imaginary parts (roots were rejected), 27 curves could not be analyzed 
as they led to positive relaxation elements, 70 curves had no real roots, and 1325 curves had R fac- 

tors greater than 0.25 and were thus rejected. The results for the 882 determined distances com- 
pared to the crystallographic distances are shown in Fig. 3c. 

For the third noise level of  0.5%, 679 curves were directly analyzed, 752 required pivoting, 194 

were found with roots with large imaginary parts (r~oots rejected), 39 curves could not be analyzed 
as they led to positive relaxation elements, 738 curves had no real roots, and 1184 curves had R 

factors greater than 0.25 and were thus rejected. The results for the 343 determined distances com- 
pared to the crystallographic distances are shown in Fig. 3d. 

The quality of the analyses was then evaluated by computing the error distribution using the 

Ai= d - -  quantity ,heo" computed for all the distances determined. 

The mean, < A > ,  and the standard deviation, ~, were then computed for each noise level. A de- 
parture of  < A >  from unity is a sign of  a bias in the method, and a small ~ value parameter  indi- 
cates a small overall error in the determined distances. These results are summarized in Table 1. 
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TABLE 1 
SUMMARY OF NUMERICAL TESTS FOR THE QUALITATIVE EVALUATION OF THE ANALYSIS OF 

BUILD-UP CURVES 

Noise level < A > a (%) Maximum distance Number of  distances 
(%) found (,~) kept 

0 (sl)" 0.89332 6.19 5.73 2304 

0 (lp)" 1.00009 0.98 5.73 2301 

0.02 (Ip) J 0.99761 2.54 5.61 1299 

0. I (lp)" 1.00559 2.83 5. t 4 882 

0.5 (lp) ~ 1.00492 3.89 4.67 343 

lp, linear prediction: sl, slope method. When the linear-prediction method is used, only the points giving an R factor less 
than 0.25 are considered in the analysis. 

The same analyses were then performed on the 40-points and 30-points data sets, with the same 
kind of results. A summary of the quality of the analysis is shown in Table 2. 

DISCUSSION 

The method described here permits quantitative estimations of interproton distances in a pro- 
tein from the analysis of  NOE build-up curves. It has several advantages over the procedures pre- 
viously proposed. 

First, it is essentially a local method; the determination of the interproton distance i,j is per- 
formed only from the build-up curve measured between spins i and j. The accuracy of the ob- 
tained parameter is totally independent of  other measurements, and the analysis can be performed 
on an isolated peak, for which the assignment need not even be known. This is in sharp contrast 
with all the other methods developed for this purpose. With the exception of the initial- 
slope method, all the proposed techniques for the determination of distances from the NOE inten- 
sity measurement rely on some kind of back-calculation of the NOE intensities from a set of geo- 
metrical parameters. These parameters can be either a rough 3D molecular structure (Borgias and 

TABLE 2 

QUALITATIVE EVALUATION OF THE ANALYSIS OF BUILD-UP CURVES FOR D I F F E R E N T  SAMPLINGS 

Noise level (%) 0 0.02 0.1 0.5 

30 points < A >  1.00006 0.99855 1.00173 1.00137 

r 2.02 3.31 4.21 5.49 

40 points < A >  0.99991 1.0003 1.0014 1.01418 

cr(%) 0.78 2.84 3.19 4.17 

50 points < A > 1.00009 0.99761 1.00559 1.00492 

cr{%) 0.98 2.54 2.83 3.89 
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James, 1989; Boelens et al., 1988) or a set of  distances (Madrid et al., 1991 ). In all cases, unmea- 
sured NOE peaks are estimated from the current estimate of  the geometrical parameters. All these 
techniques are characterized by the fact that the number of  unmeasured NOE peaks must not be 
too large for the method to converge, and also by the fact that a large number of  unmeasured 
NOE peaks will impair the precision of  the distance determinations. 

It should also be noted that the method is 'model-free'. Indeed, the purpose of the computation 
is to obtain relaxation parameters and not distances. The user can always infer the distances from 
the relaxation parameters by choosing an adequate dynamic model for the molecule. The efficien- 
cy of the method is completely independent of  the choice of  this model. 

The analysis of  the results shown in Figs. 3 and 4 and in Tables I and 2 proves that the pro- 
posed method performances are very good. In the ideal case of  a noise-free data set, the method 
performs ideally, with no error of  any kind for distances up to 6 ,~. Despite the fact that this case 
is unrealistic, it shows how intrinsically suitable the method is. The results shown in Fig. 3b-d 
demonstrate the method's performance on more realistic noisy data. The evaluation of  the R fac- 
tors following Eq. 10 leads to the rejection of  build-up curves that can not be efficiently analyzed. 
As a result, as indicated in Table 1, increasing levels of  experimental noise do not increase signifi- 
cantly the errors on the computed distances, but only reduce the number of distances that can be 
successfully extracted. This feature ensures that the measures obtained will maintain a constant 
level of  confidence, determined by the threshold chosen for rejecting build-up curves with large R 
values, regardless of  the noise level. For the value R = 25%, chosen here, the error on the obtained 
distance is in the order of 4%. 

The method seems to perform equally well with different samplings of  the build-up curves. The 
results shown in Table 2 are actually biased by the fact that the R factors were computed at differ- 
ent positions (because of the different sampling periods); this results in a slightly less tight selec- 
tion of  the incorrect distances leading to slightly larger values for ~. 

Although LP-SVD is one of  the slowest linear-prediction methods, it is very efficient on small 
data sets, thus the method proposed here performs relatively quickly. The complete analysis of  the 
2304 curves was performed in about 90 min on our Alliant FX 40 with a mean processing time of  
2.3 s/curve. 

The application of these technic~ues to experimental studies may now be investigated. Several 
problems arise when an experimental approach is attempted. 

First, it may seem unrealistic to perform 40 or 50 NOESY experiments on a typical sample of 
protein. However, the development of 3D experiments has shown that good-quality NOESY 
spectra can be acquired in a couple of  hours on protein samples with sufficient sensitivity. Thus, 
acquiring such a set of  NOESY experiments would require 3 to 4 days, which seems reasonable 
given the workload of a typical NMR spectrometer. 

Second, it appears from the simulation of the build-up curves that very different curve shapes 
are present in the experiment. Some reach their maxima at very short mixing times and then decay 
rapidly, while others increase slowly, attaining their maxima at long mixing times. Thus, one 
should carefully set up the sampling of the mixing time delay so that an optimal accuracy is ob- 
tained for relaxation-rate estimation. 

Another limitation of  the method in the present state of its implementation is that linear predic- 
tion needs to run on regularly sampled points. This leads to a nonoptimal measurement of the 
build-up curves in their decaying part, where the density of  information is low. This shortcoming 
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may be surmounted by using other analytical methods,  such as the method based on the Padb-  
Laplace analysis (Yeramian and Claverie, 1987). 

Another  characteristic o f  the experimental data set will be the presence of  zero-quantum peaks 
in the NOESY spectra. These signals will produce a sinusoidal modulat ion of  the measured peak 
with respect to ~m, added to the NOE modulation.  The analysis of  a build-up curve containing fre- 
quencies due to zero-quantum peaks may be even more difficult. However,  we do not expect this 

effect to be a major  burden as: (i) the lifetime of  the zero-quantum coherences for large molecules 
seems to be at least an order of  magnitude smaller than the T~ and NOE lifetimes: and (ii) since 

the zero-quantum peaks have an antiphase pattern, with zero volume, a careful integration of  the 
peak pattern should cancel this effect (Stoven et al., 1989). 

C O N C L U S I O N  

The method presented here should be a valuable tool for the determination of interproton dis- 
tances in biological molecules. It gives encouraging results on simulated studies, but experimental 
cases remain to be tested. It should permit the extraction of quantitative distance information 

from N M R  studies. Accuracy better than 5% for distances up to 4-5 ,~ (as seen in Fig. 3) does not 
seem unrealistic. Such an accuracy, if verified experimentally, would change the approach of 

structural determination of  biological molecules by NMR.  Structural information could be 
gained from a small set o f  accurate distances, for instance in cases where assignment is not fully 

available, rather than on a large set o f  inaccurate distances as is commonly practised at present. 
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APPENDIX 

We show here that when Froissard doublets are obtained from a rooting analysis of  the auto- 
7[ . 

regressive polynomial, the rotation of such a doublet by ~ m order to bring the roots back to 

the real axis gives rise to equivalent build-up curve patterns. To do so, we show that the curves 
thus obtained have equivalent first-order estimation. 

A Froissard doublet is characterized by two related roots, located within the unit-circle, with 
opposite frequencies, opposite imaginary phases and the same amplitudes and damping factors: 

zl =e  a+ib z2=e  ~-ib (AI) 

The time dependence generated by such a pattern is: 

- i  el"§ ela-ib~t=i eat(e -i b ' - e i  b')=2e"tsin(bt) ~ 2 bt e ~' if bt<< I (A2) 

The rotation leads to: 

Z' l = e  a+b z '  2 = e  a - b  (A3) 

which gives: 

) 
eC"+b~'--ela-b~l=el"+bl'(l--e-Zbt) "~ 2 b t e  ~' ifbt<<l andb<<a (A4) 

The developments of  the two expressions are very similar and equivalent for small values of bt. 
The operation permitting the replacement of Eq. A2 by Eq. A4 is equivalent to pivoting the root 

doublet by~  about the center of the doublet, bringing the roots back onto the real axis. 


